Carbohydr. Res. 2002, 337, 473

Human milk oligosaccharides: an enzymatic protection step simplifies the synthesis of 3'- and 6'-O-sialyllactose and their analogues

Anna Rencurosi,^a Laura Poletti,^a Marco Guerrini,^b Giovanni Russo,^a Luigi Lay^a

^aDepartment of Organic and Industrial Chemistry, University of Milan, via G. Venezian, I-21-20133 Milan, Italy ^bInstitute of Chemistry and Biochemistry 'G. Ronzoni', via Colombo, I-81-20131, Milan, Italy

a) $R^1 = H$; $R^2 = \alpha Neu5Ac$, SO_3^- , CH_2COO^-

b) $R^1 = \alpha Neu5Ac$; SO_3^- ; CH_2COO^- ; $R^2 = H$

Carbohydr. Res. 2002, 337, 485

Synthesis of oligosaccharide derivatives related to those from sangi, a Chinese herbal medicine from *Panax notoginseng*

Feng Yang, Yuguo Du

Research Center for Eco-Environmental Sciences, Academia Sinica, PO Box 2871, Beijing 100085, PR China

Synthesis and characterization of water-soluble hydroxybutenyl cyclomaltooligosaccharides (cyclodextrins)

Charles M. Buchanan,^a Susan R. Alderson,^a Curtis D. Cleven,^a Daniel W. Dixon,^a Robert Ivanyi,^b Juanelle L. Lambert,^a Douglas W. Lowman,^a Rick J. Offerman,^a Jozsef Szejtli,^b Lajos Szente^b

^aEastman Chemical Company, Research Laboratories, PO Box 1972, Kingsport, TN 37662, USA

^bCyclolab, PO Box 435, Budapest H-1525, Hungary

Carbohydr. Res. 2002, 337, 493

$$R = H$$
, $\begin{bmatrix} 4 & 3 & 0 \\ 2 & z \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ z \end{bmatrix}$

R1 = H, z = 1-3

Addition of maltodextrins to the nonreducing-end of acarbose by reaction of acarbose with cyclomaltohexaose and cyclomaltodextrin glucanyltransferase

Seung-Heon Yoon, John F. Robyt

Laboratory of Carbohydrate Chemistry and Enzymology, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA

Carbohydr. Res. 2001, 337, 517

Transglucosidation of methyl and ethyl D-glucopyranosides by alcoholysis

Per J. Garegg, a Karl-Jonas Johansson, Peter Konradsson, Bengt Lindberg, Zygmunt Trumpakaj b

^aArrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden

^bDepartment of Chemistry, University of Gdansk, PL-80-952 Gdansk, Poland

The initial rate constants for the formation of the two products, during the transglucosidation, have been determined.

Carbohydr. Res. 2002, 337, 523

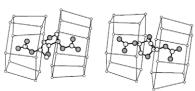
Effect of calcium ions on the organization of iota-carrageenan helices: an X-ray investigation

Srinivas Janaswamy, Rengaswami Chandrasekaran

Whistler Center for Carbohydrate Research, Food Science Building, Purdue University, West Lafayette, IN 47907-1160, USA

X-ray fiber diffraction analysis confirms that calcium 1-carrageenan forms a threefold, right-handed, half-staggered, parallel, double helix stabilized by interchain hydrogen bonds. According to the detailed structural results, three helices are packed in a trigonal unit cell. Strong interactions between the sulfate groups of neighboring helices, mediated by calcium ions and water molecules, are responsible for stabilizing the three-dimensional structure.

Crystal structure of the cyclomaltohexaose (α-cyclodextrin) complex with isosorbide dinitrate. Guest-


Carbohydr. Res. 2002, 337, 537

(α-cyclodextrin) complex with isosorbide dinitrate. Guest-modulated channel-type structure

Kazuaki Harata, a Kenji Kawano b

^aBiological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan

^bDepartment of Clinical Pharmaceutics, Niigata College of Pharmacy, Kamishinei-cho, Niigata 950-2081, Japan

Monte Carlo docking simulations of cyclomaltoheptaose and dimethyl cyclomaltoheptaose with paclitaxel

Carbohydr. Res. 2002, 337, 549

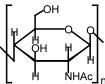
Hyunmyung Kim, a Jungwon Choi, b Hyun-Won Kim, C Seunho Junga

^aDepartment of Microbial Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, South Korea ^bDepartment of Chemistry, The University of Suwon, San 2-2 Wawoo-ri, Bongdam-eup, Hwasung city, Kyunggi 445-743, South Korea

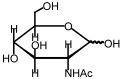
^cDepartment of Biochemistry and Institute of Basic Medical Sciences and Medical Engineering Institute, Yonsei University, Wonju College of Medicine, Wonju 220-701, South Korea

The molecular basis for the remarkable enhancement of the solubility of paclitaxel by O-dimethylcyclomaltoheptaose (DM- β -CD) over cyclomaltoheptaose (β -cyclodextrin, β -CD) was investigated with Monte Carlo docking—minimization simulation.

Quantitative production of 2-acetamido-2-deoxy-D-glucose from crystalline chitin by bacterial chitinase


Carbohydr. Res. 2001, 337, 557

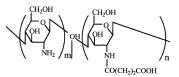
Rath Pichyangkura, Sanya Kudan, Kamontip Kuttiyawong, Mongkol Sukwattanasinitt, Sei-ichi Aibac


^aDepartment of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

^bCenter for bioactive Compounds, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

^cThe Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology, Osaka 563-8577, Japan

bacterial chitinase


Depolymerization of N-succinyl-chitosan by hydrochloric acid

Carbohydr. Res. 2002, 337, 561

Yoshinori Kato, Hiraku Onishi, Yoshiharu Machida

Department of Drug Delivery Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

The optimal conditions for MW manipulation of N-succinyl-chitosan were room temperature with 7.5 M hydrochloric acid or 40 °C with 3.3 M hydrochloric acid.

N-Succinyl-chitosan

Confirmation of the structure of tetra-O-(tert-butyl-dimethylsilyl)-D-glucono-1 4-lactone formed by silvlati

Carbohydr. Res. 2002, 337, 565

dimethylsilyl)-D-glucono-1,4-lactone formed by silylation of D-glucono-1,5-lactone

Janak Singh,^a John DiMarco,^b Thomas P. Kissick,^a Prashant Deshpande,^a Jack Z. Gougoutas^b

^aProcess Research and Development, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA ^bMaterial Science, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA

The structure of tetra-*O*-(*tert*-butyldimethylsilyl)-D-glucono-1,4-lactone made by the silylation of D-glucono-1,5-lactone was confirmed by single-crystal X-ray analysis.